Estimation of Variance and Spatial Correlation Width for Fine-scale Measurement Error in Digital Elevation Model

نویسندگان

  • Mikhail L. Uss
  • Benoit Vozel
  • Vladimir V. Lukin
  • Kacem Chehdi
چکیده

In this paper, we borrow from blind noise parameter estimation (BNPE) methodology early developed in the image processing field an original and innovative no-reference approach to estimate Digital Elevation Model (DEM) vertical error parameters without resorting to a reference DEM. The challenges associated with the proposed approach related to the physical nature of the error and its multifactor structure in DEM are discussed in detail. A suitable multivariate method is then developed for estimating the error in gridded DEM. It is built on a recently proposed vectorial BNPE method for estimating spatially correlated noise using Noise Informative areas and Fractal Brownian Motion. The newly multivariate method is derived to estimate the effect of the stacking procedure and that of the epipolar line error on local (fine-scale) standard deviation and autocorrelation function width of photogrammetric DEM measurement error. Applying the new estimator to ASTER GDEM2 and ALOS World 3D DEMs, good agreement of derived estimates with results available in the literature is evidenced. In future works, the proposed no-reference method for analyzing DEM error can be extended to a larger number of predictors for accounting for other factors influencing remote sensing (RS) DEM accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment Effect of the Spatial Resolution of Digital Elevation Model on Daily Discharge Estimation of Arazkuseh Watershed Using SWAT Model

The spatial quality of the Digital Elevation Model (DEM) has a great effect on the Soil and Water Assessment Tool (SWAT) semi-distributed model. The purpose of this study was to evaluate the effect of spatial accuracy of three DEMs with spatial resolutions of 10, 50 and 200 m on the results of daily discharge simulation in the Arazkuseh subwatershed located in Gorganroud watershed, Golestan pro...

متن کامل

Effects of Digital Elevation Model (DEM) Spatial Resolution on the Recognition of Physiography Characteristics of the Basin )A Case Study of Shahrchai Watershed)

In recent years with developing geographic information systems tools, modeling and simulating methods has been developed quickly. Availability of accurate base maps is the basis of the cell sizes determination and preparing digital hydrologic models. Removing errors and minimizing of uncertainty factors in the digital models play the main role in improving the accuracy of the maps. The main pur...

متن کامل

Spatial Correlation of Gold and Silver Elements Concentration in Ghezel Ozen Region by Using Geostatistical Methods

‎The purpose of this study was to determine and evaluate of spatial distribution of gold and silver elements concentration by using geostatistical methods‎. ‎This study was carried out in Ghezel Ozen area for 95 samples of lithogeochemicals‎. ‎At first‎, ‎Censor data was replaced and the values of outlier's data were identified using the box-Plot and Q-Q-Plot charts and reduced by the Doerffel ...

متن کامل

Spatial prediction of soil electrical conductivity using soil axillary data, soft data derived from general linear model and error measurement

     Indirect measurement of soil electrical conductivity (EC) has become a major data source in spatial/temporal monitoring of soil salinity. However, in many cases, the weak correlation between direct and indirect measurement of EC has reduced the accuracy and performance of the predicted maps. The objective of this research was to estimate soil EC based on a general linear model via using se...

متن کامل

Evaluating optimized digital elevation precipitation model using IDW method (Case study: Jam & Riz Watershed of Assaloyeh, Iran)

A watershed management program is usually based on the results of watershed modeling. Accurate modeling results are decided by the appropriate parameters and input data. Precipitation is the most important input for watershed modeling. Precipitation characteristics usually exhibit significant spatial variation, even within small watersheds. Therefore, properly describing the spatial variation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.07740  شماره 

صفحات  -

تاریخ انتشار 2018